状态空间模型通过构建生成可观测数据的潜在未观测状态模型来进行时间序列分析。作为该方法论的核心,卡尔曼滤波为实时估计这些隐状态提供了一个理论完备的解决方案。本文深入探讨这些方法的理论基础和实践应用,阐述其在多领域的适用性。
近日,一篇由澳洲悉尼大学团队牵头完成的论文在 X 上引起关注,该校的博士生孙艺菲(Yifei Sun,音)是论文第一作者。图 | Yifei Sun(来源:LinkedIn)基于人类连接组计划的功能性磁共振成像数据,他们使用 Transformer ...
近日,一篇由澳洲悉尼大学团队牵头完成的论文在 X 上引起关注,该校的博士生孙艺菲(Yifei Sun,音)是论文第一作者。 图 | Yifei Sun(来源:LinkedIn) 基于人类连接组计划的功能性磁共振成像数据,他们使用 ...