黄海平中山大学物理学院神经网络在当今人工智能研究和应用中发挥着不可替代的作用。它是人类在理解自我(大脑)的过程中产生的副产品,以此副产品,人类希望建造一个机器智能来实现机器文明。这个目标在当下如火如荼的人工智能研究中被无限倍凸显,甚至被认为是一场新的 ...
FedCFA 引入了端侧反事实学习机制,通过在客户端本地生成与全局平均数据对齐的反事实样本,缓解端侧数据中存在的偏见,从而有效避免模型学习到错误的特征 - 标签关联。该研究已被 AAAI 2025 接收。
摒弃StyleGAN反锁技巧,转而采用简洁而高效的现代架构设计。结果发现,适当的ResNet设计、初始化和重采样,同时加上分组卷积和无归一化,就能达到甚至超越StyleGAN的性能。